Xenogeneic protein-free cultivation of mesenchymal stromal cells - towards clinical applications.

نویسندگان

  • D Stehlík
  • R Pytlík
  • H Rychtrmocová
  • L Kideryová
  • R Veselá
  • Z Kopečný
  • T Trč
  • M Trněný
چکیده

We have studied a rapid cultivation method for human mesenchymal stromal cells based on CellGroTM medium and human serum, supplemented with insulin, ascorbic acid, dexamethasone, epidermal growth factor, platelet-derived growth factor BB, macrophage colony-stimulating factor and fibroblast growth factor 2. This study has shown that rapid expansion of human multipotent mesenchymal stromal cells using human serum could not be achieved without addition of growth factors. Furthermore, we have found that insulin and, quite probably, epidermal growth factor may be omitted from our formula without loss of colony-forming capacity or total cell yield. On the other hand, dexamethasone, ascorbic acid and fibroblast growth factor 2 were necessary for the growth and colony-forming capacity of multipotent mesenchymal stromal cells, while platelet-derived growth factor BB prevented their differentiation into adipogenic lineage. Moreover, multipotent mesenchymal stromal cells cultivated in our system expressed higher levels of bone morphogenetic protein 2, but not bone morphogenetic protein 7, than cells cultivated in α-MEM with foetal bovine serum. This shows that our system promotes differentiation of mesenchymal cells towards osteogenic and chondrogenic lineages, making them more suitable for bone and cartilage engineering than cells grown in conventional media. Furthermore, we have proved that these cells may be conveniently cultivated in a closed system, in vessels certified for clinical use (RoboFlaskTM), making the transfer of our cultivation technology to good clinical practice easier and more convenient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal stem cells in osteoarticular diseases: an update

Multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) are mainly isolated from bone marrow or fat tissue. Because of their potential of multilineage differentiation towards bone, cartilage and fat tissue, they were initially evaluated to develop innovative strategies for tissue engineering applications. More recently, they have gained interest based on their immunomodulatory pr...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

GMP-Compliant Isolation and Large-Scale Expansion of Bone Marrow-Derived MSC

BACKGROUND Mesenchymal stromal cells (MSC) have gained importance in tissue repair, tissue engineering and in immunosupressive therapy during the last years. Due to the limited availability of MSC in the bone marrow, ex vivo amplification prior to clinical application is requisite to obtain therapeutic applicable cell doses. Translation of preclinical into clinical-grade large-scale MSC expansi...

متن کامل

Immunoresponse to Allogeneic Synovial or Xenogenic Mesenchymal Stromal Cells in a Co-Culture Model

The purpose of our investigations was to measure, in a co-culture condition, the immunoresponse to allogeneic or xenogenic cells, selected as potential sources for cell therapy of arthritis. We challenged human spleen-derived cells (hSpl) by three different mechanisms: 1) exposure to donor allogeneic or xenogeneic cellular antigens; 2) exposure to donor cells transduced with adenoviral antigens...

متن کامل

Isolation and animal serum free expansion of human umbilical cord derived mesenchymal stromal cells (MSCs) and endothelial colony forming progenitor cells (ECFCs).

The umbilical cord is a rich source for progenitor cells with high proliferative potential including mesenchymal stromal cells (also termed mesenchymal stem cells, MSCs) and endothelial colony forming progenitor cells (ECFCs). Both cell types are key players in maintaining the integrity of tissue and are probably also involved in regenerative processes and tumor formation. To study their biolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Folia biologica

دوره 58 3  شماره 

صفحات  -

تاریخ انتشار 2012